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Abstract
The potential non-equivalent defects in both 3C- and 4H-SiC are classified
by a new method that is based on symmetry considerations. In 4H-SiC their
number is considerably higher than in 3C-SiC, since the hexagonal symmetry
leads to diversification. The different theoretical methods hitherto used to
investigate defects in 3C-SiC are critically reviewed. Classical MD simulations
with a recently developed interatomic potential are employed to investigate the
stability, structure and energetics of the large number of non-equivalent defects
that may exist in 4H-SiC. Most of the potential defect configurations in 4H-SiC
are found to be stable. The interstitials between hexagonal and trigonal rings,
which do not exist in 3C-SiC, are characteristic for 4H-SiC and other hexagonal
polytypes. The structure and energetics of some complex and anisotropic
dumbbells depend strongly on the polytype. On the other hand, polytypism
does not have a significant influence on the properties of the more compact
and isotropic defects, such as vacancies, antisites, hexagonal interstitials, and
many dumbbells. The results allow conclusions to be drawn about the energy
hierarchy of the defects.

1. Introduction

Silicon carbide (SiC) is a promising material for applications in power devices and high
temperature electronics. Ion implantation is considered to be the best means for selective
electrical doping of SiC. However, ion irradiation produces defects that can prevent the
electrical activation of the implanted dopants. The knowledge of ion-beam-induced defect
formation and evolution in SiC is therefore very important, and much of the understanding
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will be derived from the results of investigations of elementary defects, such as vacancies,
antisites and self-interstitials. The available data on defect stability, formation energy and
structure at absolute zero (0 K) have mostly been obtained by theoretical studies that consider
the relaxation of a computational cell containing a small volume of SiC that includes the
initial configuration of the defect under consideration. The driving forces for the relaxation
are obtained by either taking into account both electronic and ionic degrees of freedom or
considering the lattice atoms as elementary units. In the first and second cases, the interactions
are determined by ab initio methods and by classical interatomic potentials, respectively. The
latter methods are limited to neutral defects whereas the former are also able to investigate
the influence of electrical charges. The relaxation procedure itself consists of either energy
minimization by known numerical recipes or rapid quenching in the framework of molecular
dynamics (MD) simulations. A peculiarity of SiC is the occurrence of polytypism with more
than 200 different polytypes. Because of its simple lattice structure, previous investigations
on elementary defects were mostly focused on the cubic 3C polytype of SiC. On the other
hand, SiC wafers for technological applications are either of 4H or 6H polytype. It is therefore
very important to extend the theoretical investigations on elementary defects to these more
complicated crystal structures.

In the present work, a comparative study of neutral vacancies,antisites and self-interstitials
in 4H- and 3C-SiC at 0 K is performed. Section 2 gives a short overview on lattice structure
and suitable geometrical representation of both polytypes. Using symmetry considerations,
the potential defects are classified in section 3. These defect configurations define the initial
condition for the relaxation of the computational cell. In the literature, different definitions
have been used for the formation energies of defects in the binary SiC system. This renders the
comparison between previous results more difficult. Therefore, some clarification on this topic
is provided, even though it largely represents known concepts (cf section 4). The available
theoretical data on the structure and energetics of defects in 3C-SiC are critically reviewed. MD
simulations are employed to calculate the properties of elementary defects in 3C- and 4H-SiC
(cf section 5) using the classical interatomic potential developed by Gao and Weber [1]. The
application of this method is justified since the present comprehensive comparative study aims
to provide a first and relative estimate of the influence of polytypism on stability, formation
energy and structure of elementary defects. Furthermore, the use of classical potentials has the
important advantage that it requires much less computational effort than ab initio calculations.

2. Polytypism of SiC

The following short overview on structure and suitable geometrical representation of different
SiC polytypes is limited to supporting the objectives of this work. For a detailed description
of crystal symmetry, structure, and polytypism, the reader is referred to previous literature
[2–4]. The lattice structure of SiC is characterized by fourfold-coordinated Si and C arranged
in tetrahedra. In all polytypes, the atoms have identical nearest neighbours. However, there
are differences in the second, the third, and the following neighbour shells. Each polytype
can be characterized by a certain stacking sequence of layers of tetrahedra along a direction
parallel to Si–C bonds whose orientations are identical in all layers. This direction is called
the c-axis, and the plane perpendicular to the c-axis is the basal plane. In the stack, the layers
may differ in the orientation of those Si–C bonds that are not parallel to the c-axis. 3C-SiC
is the only cubic polytype, and the periodicity of stacking is three. The other polytypes show
hexagonal and rhombohedral symmetry. For example, 6H-SiC is a hexagonal polytype where
the periodicity of stacking is six; in the rhombohedral polytype, 15R-SiC, the periodicity is 15.
In the hexagonal and rhombohedral polytypes, slight deviations from the ideal tetrahedral
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Figure 1. The lattice structure of 3C- and 4H-SiC. The crystal axes are given in hexagonal and
cubic notation. Silicon and carbon atoms are depicted by larger dark and smaller grey spheres,
respectively. A polytype may be characterized by a certain stacking sequence of layers of tetrahedra
along the c-axis. In 3C- and 4H-SiC the periodicity of stacking is three and four, respectively. T1,
T2, T3, T ′

1, and T ′
3 denote different types of layers. The lattice can be also constructed by a two-

dimensional periodic arrangement of the intersections of Si–C dimer rows with the basal plane,
where the rows are perpendicular to this plane. Whereas in 3C-SiC only one type of dimer rows
(A) exists, there are two different rows (B and C) in 4H-SiC. The solid and dotted lines show rows
with different coordinates relative to the axis [11–20]. The insets depict the dimer sequences in
rows A, B and C in detail. The nearest neighbour distance is denoted by b. It is used as unit of
the distance between two dimers. Note that this and the following figures show only a part of the
crystal. Therefore, not all bonds of the atoms are drawn.

structure exist. These are neglected in following considerations. Figure 1 illustrates the
stacked layers of CSi4 (or SiC4) tetrahedra in the cases of 3C- and 4H-SiC. The crystal axes
are given in hexagonal and cubic notations. Another possibility to characterize the polytypism
is based on the consideration of Si–C dimer rows that are perpendicular to the basal plane. The
lattice can be built by a two-dimensional periodic arrangement of the intersections of these
dimer rows with the basal plane. The rows may differ in the arrangement of the dimers. In
3C-SiC only one type of dimer rows, called row A, exists. Therefore, the number of non-
equivalent Si and C sites is one. In 4H-SiC there are two different rows, namely rows B and C .
This leads to two non-equivalent sites for both Si and C. The insets of figure 1 depict the dimer
rows A, B and C in more detail. The sites on rows B and C are often called hexagonal and
cubic sites, respectively (cf e.g. [5–7]). In the present work, this notation is not used because it
is not sufficient for the following reasons. Although the sites on row C in 4H-SiC and the sites
on row A in 3C-SiC have identical first and second nearest neighbours, their third neighbour
shells are different. Furthermore, on row C the distance to the third nearest neighbour is only
by a factor of about 1.02 greater than that to the second nearest neighbours, whereas in row
A this factor is about 1.33. Therefore, the sites on row C are not equivalent to those in the
cubic polytype. On the other hand, the sites on row B in 4H-SiC and on row A in 3C-SiC
have different second nearest neighbours. The row B sites are characteristic for the hexagonal
4H polytype, but they cannot be considered as unique hexagonal sites per se. This can be
easily demonstrated by comparing with non-equivalent sites in other hexagonal polytypes.
For example, in 6H-SiC the corresponding sites have neighbour shells that are different from
those in 4H-SiC.
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Figure 2. The fundamental structure of D1 and D2 dumbbell interstitials. The light grey spheres
and cylinders show the tetrahedron in the ideal lattice. In this example, the central carbon atom is
replaced by a C–C dumbbell depicted by two grey spheres. The D1 dumbbell lies in one of the six
planes formed by two C–Si bonds. This plane is illustrated by the triangle. The two atoms of the
D2 dumbbell are situated in different planes that are perpendicular to each other. In 3C-SiC, the
D1 and D2 dumbbells are identical to the 〈110〉 and the 〈100〉 dumbbells, respectively.

3. Classification of potential elementary defects based on symmetry considerations

3.1. Non-equivalent on-site defects

The higher number of non-equivalent lattice sites in 4H-SiC leads to a greater variety of
potential elementary defects than in the 3C polytype. Whereas in 3C-SiC two types of
vacancies, VA

Si and VA
C, exist, in 4H-SiC four different vacancy types, VB

Si, VC
Si, VB

C , and
VC

C , are present. The subscripts and superscripts denote the vacancy type and the dimer row to
which the vacancy belongs, respectively. Similar results are obtained for the antisite defects.
In 3C-SiC, the two antisites SiA

C and CA
Si are found, whereas in 4H-SiC the number of antisites

is four (SiB
C , SiC

C , CB
Si, and CC

Si).
In covalent materials like Si and SiC, dumbbell self-interstitials are important lattice-site

defects since their formation energies may be relatively low. A dumbbell is formed by an
interstitial and a lattice atom sharing a lattice site in a split configuration. In a cubic lattice, the
dumbbells are oriented parallel to the 〈110〉 and to the 〈100〉 directions. Due to the polytypism,
another classification must be used for SiC. The scheme employed in the present work is based
on the consideration of the local environment of the lattice sites. It is valid for 3C-SiC and all
hexagonal polytypes, and it may be easily generalized to rhombohedral SiC polytypes. The
dumbbell self-interstitials can be classified in two groups, the type 1 (D1) and the type 2 (D2)
dumbbells, where the D1 dumbbell lies in one of the six planes formed by two Si–C bonds, and
the two atoms of the D2 dumbbell are situated in two perpendicular planes, with each plane
being formed by two Si–C bonds. This is illustrated in figure 2 for a dumbbell consisting of
two carbon atoms on a carbon site. In 3C-SiC, the D1 and D2 dumbbells are identical to the
〈110〉 and the 〈100〉 dumbbells, respectively. Whereas in the 3C polytype four non-equivalent
D1 dumbbells exist, in 4H-SiC their number is 20. This considerable increase is due to the
hexagonal symmetry, which leads to the fact that the D1 dumbbells inside and outside the basal
plane are not equivalent. The scheme presented in figure 3 shows more details. The notation
for the different D1 dumbbells is explained in the figure caption. Figure 4 depicts the structure
of the non-equivalentD2 dumbbells. The number of different D2 dumbbells in 3C- and 4H-SiC
is 4 and 12, respectively. In figures 3 and 4, the usual notation for the dumbbells in the cubic
polytype (3C-SiC) is given in brackets.
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Figure 3. D1 dumbbells in 3C- and 4H-SiC. The four fundamental types are shown schematically.
The following notation is used. For example, in the case of D1Si + CB , C and Si are the original
and the additional atoms at the dumbbell site, respectively. The superscript B denotes the dimer
row in which the dumbbell is situated. Other superscripts are introduced to describe whether the
dumbbell lies in the basal plane (superscript b) or to show the orientation (u, d) of a mixed dumbbell
which is not in the basal plane. If in a mixed dumbbell the coordinate of the Si atom relative to
the c-axis is larger (smaller) than that of the C atom, the superscript u (d) is used. The number of
non-equivalent D1 dumbbells in 3C-SiC and 4H-SiC is 4 and 20, respectively. Additionally to the
general notation valid for cubic as well as hexagonal polytypes, the usual notation for 3C-SiC is
given in brackets.
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Figure 4. The number of different D2 dumbbells in 3C- and 4H-SiC is 4 and 12, respectively. The
schematic representation and the notation are similar to figure 3.

3.2. Elementary defects not related to lattice sites

In both 3C- and 4H-SiC, the number of tetrahedral self-interstitials is four (SiTSi, CTC, SiTC,
CTSi). This is due to the fact that in the 4H polytype these interstitials exist only on row B. The
number of different hexagonal self-interstitials in 3C- and 4H-SiC is two and six, respectively.
In the latter case, the hexagonal self-interstitials on row B are not equivalent to those that
are not on row B (SiH, CH), i.e. inside a hexagonal Si3C3 ring that is not in the basal plane.
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row B

CTR

row C

CTR
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Figure 5. The two highly symmetric self-interstitial structures which are characteristic for the
hexagonal polytype. The first defect type consists of a self-interstitial (dark sphere) on row B
between two hexagonal Si3C3 rings (HR). The example shows the Si interstitial SiHR (a). The
second type is a self-interstitial on row C between a trigonal Si3 and a trigonal C3 ring (TR)
illustrated in (b) for CTR. The dashed lines mark the hexagonal and trigonal rings. The dotted lines
show rows B and C .

Furthermore, there are two types of interstitials on row B that are situated inside the hexagonal
Si3C3 ring close to carbon (SiHC, CHC) or close to silicon (SiHSi, CHSi) atoms of the same
row. Figure 5 depicts two highly symmetric self-interstitial structures that should be found in
4H-, but not in 3C-SiC. Similar defects may also exist in other hexagonal polytypes. The first
defect type consists of a self-interstitial on row B between two hexagonal Si3C3 rings (SiHR,
CHR), and the second is an interstitial on row C between a trigonal Si3 and a trigonal C3 ring
(SiTR, CTR).

4. Defect formation energy

The thermodynamically correct definition considers a reference system consisting of a part of
a perfect SiC crystal with the same number of Si and C atoms as in the system with the defect.
Then, the formation energy for a general neutral defect is given by [8, 5–7]

E f
D = ED − nSiµSi − nCµC. (1)

At 0 K, the difference between the free enthalpy and the energy can be neglected. ED is the
total energy obtained after relaxation of the computational cell with the defect. The number
of silicon and carbon atoms in this cell is denoted by nSi and nC, respectively. For example, in
the case of a carbon antisite defect (CSi), nSi is equal to nC − 2. µSi and µC are the chemical
potentials of the atoms in the perfect SiC crystal. A simple transformation of equation (1)
leads to

E f
D = E ′f

D − 1
2 (nSi − nC)�µ (2)

with

E ′f
D = ED − 1

2 (nSi + nC)µbulk
SiC − 1

2 (nSi − nC)(µbulk
Si − µbulk

C ) (3)

�µ = (µSi − µbulk
Si ) − (µC − µbulk

C ) (4)

and

µbulk
SiC = µSi + µC = µbulk

Si + µbulk
C − �Hf. (5)
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The chemical potential of a Si–C pair in bulk SiC is denoted by µbulk
SiC ; µbulk

Si and µbulk
C are

chemical potentials of the atoms in bulk Si and C modifications at 0 K (cubic Si and graphite),
respectively, and �Hf is the formation energy of the solid SiC compound. In the case of
�µ = 0, E ′f

D and E f
D are identical. On the other hand, �µ is equal to �Hf and −�Hf

under extremely Si-rich and C-rich conditions, respectively. In the former and latter cases,
the SiC crystal is connected with a Si or C reservoir, respectively. For example, under Si-rich
conditions the SiC crystal has an interface with bulk silicon. Zywietz et al [5], Torpo et al [6],
Eberlein et al [7], and Mattausch et al [9] employed the above definitions in order to calculate
defect formation energies by ab initio methods. In Mattausch et al [9], only results for Si-rich
conditions are given, whereas in the other studies [5–7], data for �µ = 0 as well as for the
Si- and C-rich conditions can be found.

An alternative to the calculation of defect formation energies via total energies
(equations (1)–(5)) is the use of binding or cohesive energies. This approach must be considered
if classical interatomic potentials are used. It was also employed in the ab initio calculations of
Wang et al [10] and Gao et al [11, 12]. The formal separation of total energies into contributions
resulting from isolated atoms (Eis(Si) and Eis(C)) and contributions due to the bonds (ED,b),
where

ED = ED,b + nSi Eis(Si) + nC Eis(C), (6a)

µbulk
SiC = 2EA

coh(SiC) + Eis(Si) + Eis(C), (6b)

µbulk
Si = EA

coh(Si) + Eis(Si), µbulk
C = EA

coh(C) + Eis(C), (6c)

leads to an alternative formulation of equation (3) given by

E ′f
D = ED,b − (nSi + nC)EA

coh(SiC) − 1
2 (nSi − nC)(EA

coh(Si) − EA
coh(C)), (7)

where EA
coh(SiC), EA

coh(Si), and EA
coh(C) are the cohesive energies per atom (superscript A)

in bulk SiC, Si and C crystals. The quantity ED,b denotes the binding or cohesive energy
in a computational cell consisting of the SiC lattice with the defect. In the same manner,
equation (5) may be reformulated to

2EA
coh(SiC) = EA

coh(Si) + EA
coh(C) − �Hf. (8)

All previous calculations [10–14] of defect formation energies by binding or cohesive energies
were performed for �µ = 0. Furthermore, these investigations did not use the definition given
in equation (7), but a relation without the additional term 1

2 (nSi − nC)(EA
coh(Si) − EA

coh(C)).
In this work (section 5) the defect formation energy is initially determined employing

the same procedure as in [10–14]. Then, the results are transformed to obtain a defect
formation energy according to equation (7), using the experimental values for the cohesive
energy per atom of bulk Si and C modifications at 0 K (EA

coh(Si) = −4.63 eV [15],
EA

coh(C) = −7.37 eV [16]), which leads to

EA
coh(Si) − EA

coh(C) = 2.74 eV. (9)

In order to enable a proper comparison, some ab initio data from the literature [10–12] must
be also transformed into a form consistent with equation (7) using the relationship defined
in equation (9). Another transformation, employing the experimental value for the formation
energy of the solid SiC compound (�Hf ≈ 0.7 eV [17–19]),must be performed, if the literature
data are only given for the extremely Si- or C-rich case. It must be emphasized that the use
of the experimental values for EA

coh(Si), EA
coh(C), EA

coh(Si) − EA
coh(C) and �Hf is not unique

but it is the most consistent way to obtain a proper comparison of the different literature data
since some authors do not report the corresponding theoretical data.
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5. Defect stability, energetics and structure

5.1. Computational method

Starting with the ideal defect configuration found by symmetry considerations, classical MD
simulations are performed to relax the SiC system at 0 K, for 10 ps, using a rapid quenching
scheme. The simulation cell is a rectangular parallelepiped with x-, y-, and z-directions parallel
to the [112̄0], [1̄100] and [0001] axes, respectively. Periodic boundary conditions are applied
to all three directions. The cell without any defects contains 1152 and 1920 atoms for 3C- and
4H-SiC, respectively. All simulations are performed at constant volume conditions. In the case
of dumbbell self-interstitials, before the relaxation simulation, the distance between the two
atoms of the dumbbell is varied to obtain the configuration with the lowest formation energy.

The reliability of results obtained by MD simulations depends decisively on the quality
of the interatomic potential employed. In previous studies on elementary defects in 3C-
SiC, the potentials of Tersoff [20, 21, 13, 11, 22] and Gao–Weber [1] were used. The
comparison of these results is complicated by the fact that different parameter sets for the
Tersoff function [20, 21, 13] and the Tersoff cut-off radii [20, 11, 22] may be employed.
Furthermore, it has been found that some previous results based on using the Tersoff potential
were not correct. Therefore, the calculations of the structure and energetics of elementary
defects in 3C-SiC have been repeated. The results are given in the appendix, together with
ab initio data from the literature, along with a more detailed discussion. The ab initio data
obtained by different groups show a reasonable agreement for vacancies and antisites, but
not for interstitials. Determining the reason for this disagreement is beyond the scope of the
present study. However, because of the agreement for vacancies and antisites, it is unlikely
that the difference is due to the transformation of the literature data that is described at the end
of section 4. On the other hand, the data determined by different classical potentials also do
not agree well.

The present comparative study employs the Gao–Weber potential [1] that was
parameterized to bulk properties of 3C-SiC (lattice constant, cohesive energy, etc) and to
the results of ab initio calculations [11] for native defects in 3C-SiC. The appendix contains a
detailed comparison of these data with the corresponding results obtained by the Gao–Weber
potential. It shows that the potential reproduces the bulk properties very well. The values of
the formation energies calculated for most defects in 3C-SiC are comparable to the ab initio
results of [11], although some differences exist. In particular the vacancy formation energies
are smaller than those obtained by ab initio calculations. However, ab initio calculations
and the classical MD simulations with the Gao–Weber potential as well as the COP3/TP1,3
parametrizations (cf tables A.1–A.3) of the Tersoff potential, yield the result that, of all the
C interstitials, the 〈100〉-oriented C + C dumbbell has the lowest formation energy. This is
consistent with experimental investigations [25]. For 4H-SiC, the accuracy of the Gao–Weber
potential is similar to that for 3C-SiC, since both polytypes are characterized by fourfold-
coordinated atoms, and the only difference consists in the second and the following neighbour
shells. Like the different versions of the Tersoff potential, the Gao–Weber potential considers
only short-range interactions with a cut-off between the first and the second neighbour shells
of an ideal lattice site. Therefore, for 4H-SiC the Gao–Weber potential predicts the same
bulk properties as for 3C-SiC. It cannot reproduce the slight deviations (of the order of 1%
of the lattice constant) from the ideal tetrahedral structure observed for the 4H polytype [26].
Therefore, one may expect that in the following results the influence of polytypism on the
stability, energetics and structure of elementary defects in SiC is rather underestimated than
overestimated, since this effect is exclusively due to the different neighbour shells of the
corresponding defects.
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[01-1]c

[011]c

[-100]c

dumbbell site

3C-SiC D1Si+Si
row A(Si+Si<110>)

4H-SiC

D1Si+Si

dumbbell site

row C

(a) (b)

Figure 6. (a) The spatial structure of the dumbbell D1Si + Si in 3C-SiC. The light grey spheres
and cylinders depict atoms and bonds of the ideal lattice. Atoms, the positions of which deviate
from that in the ideal crystal, are marked by dark spheres. The upper figure shows a view into the
[01̄1̄]c direction. The atoms of the dumbbell are marked by the ring. The dumbbell as well as row
A are situated in the plane of the figure. A view into the [100]c direction, which is perpendicular
to [01̄1̄]c, is depicted in the lower figure. (b) The structure of the dumbbell D1Si + SiC in 4H-SiC.
The dumbbell as well as row C lie in the plane of the figure. One atom is marked by a dashed
ring. This is the third nearest neighbour of the dumbbell site which has another position than in
the corresponding dumbbell structure shown in (a).

5.2. Results and discussion

For defects related to lattice sites, the comparison between formation energies in 4H- and
3C-SiC is shown in table 1. The energetics of vacancies and antisites is nearly independent of
the polytype since significant lattice deformations are found only in the immediate vicinity of
these simple defects.

The structure of the D1 dumbbells is rather complex and anisotropic as illustrated in
figure 6(a) for D1Si + Si in 3C-SiC. Therefore, for such interstitials one may expect more
differences between 3C- and 4H-SiC than for vacancies and antisites. In particular, this
concerns the Si–Si dumbbells and the mixed dumbbells on carbon sites. On the other hand,
the formation energies of C–C dumbbells and mixed dumbbells on silicon sites do not depend
so strongly on the polytype. These results demonstrate the effect of the atomic size which
can lead to significant lattice deformations. In row C, the Si–Si dumbbell in the basal plane
(D1Si + Sib,C ) is similar to that in the 3C polytype, but the corresponding dumbbell in row B
is different. This is due to the fact that the dumbbell sites in rows A and C have the same first
nearest and second nearest neighbours, whereas the site in row B differs already by the second
nearest neighbour. On the other hand, the formation energy of the Si–Si dumbbell in row
C, which is outside the basal plane (D1Si + SiC), deviates from that for the corresponding
dumbbell in 3C-SiC. This result may be explained by the influence of the third nearest
neighbour atom of the dumbbell site in row C. As already mentioned above, the distance
to this atom is only a factor of about 1.02 greater than that to the second nearest neighbours.
In the case of D1Si + SiC , the third nearest neighbour atom is very close to the anisotropic
dumbbell structure and therefore has an important influence on lattice relaxation, which is in
contrast to D1Si + Sib,C . Figure 6(b) shows the structure of D1Si + SiC . Its formation energy
is smaller than that of the corresponding dumbbell in 3C-SiC (figure 6(a)). This indicates
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Table 1. Comparison between defect formation energies (in eV) in 4H- and 3C-SiC, for the defects
related to lattice sites. The data in this and the following table were calculated using the Gao–Weber
potential [1] and the thermodynamically correct definition of the formation energy for �µ = 0
(cf equation (7)). The dumbbell notation is explained in figures 3 and 4. The spatial defect structure
was analysed in each case. In some cases, the deviation from the ideal dumbbell configuration is
considerable. Strong and very strong deviations are marked by asterisks and crosses, respectively.

4H-SiC 3C-SiC

Defect type Row B Row C Row A Defect type

Vacancies

VSi 4.67 4.68 4.67 VSi

VC 1.39 1.40 1.39 VC

Antisite defects

CSi 4.43 4.44 4.43 CSi

SiC 5.04 5.06 5.04 SiC

D1 dumbbells

D1Si + Sib 3.46 3.72
3.72 D1Si + Si (Si + Si〈110〉)

D1Si + Si 2.96 3.06

D1C + Cb 4.72 4.68
4.67 D1C + C (C + C〈110〉)

D1C + C 4.66 4.75

D1Si + Cb Not stable 3.40∗
3.54∗ D1Si + C (Si + C〈110〉)D1Si + Cu 3.01∗ 2.49∗

D1Si + Cd 5.58∗ 6.03+

D1C + Sib 5.34 5.32
5.32 D1C + Si (C + Si〈110〉)D1C + Siu 5.53 5.35

D1C + Sid 5.30 5.59

D2 dumbbells

D2Si + Si 4.16 4.18 4.15 D2Si + Si (Si + Si〈100〉)
D2C + C 4.41 4.43 4.41 D2C + C (C + C〈100〉)
D2Si + Cu 4.18∗ 2.83+

6.06+ D2Si + C (Si + C〈100〉)
D2Si + Cd 6.07+ 6.11+

D2C + Siu 4.65 4.81
4.79 D2C + Si (C + Si〈100〉)

D2C + Sid 4.78 4.81

better conditions for lattice relaxation. The mixed dumbbell on the carbon site is illustrated
in figure 7. Of the different D1 dumbbells, this structure is the most complex. It may be also
considered as a defect consisting of two Si atoms and one C atom occupying the region of a
Si–C dimer in the ideal lattice. The three atoms lie in the same plane. Figure 7 demonstrates
the strong dependence of energetics on the spatial defect structure of each polytype. The most
compact defects, D1Si + Cu,B and D1Si + Cu,C , have the lowest formation energies, which are
smaller than the formation energies of the corresponding defects in 3C-SiC. On the other hand,
the formation energy of the complicated anisotropic structures (D1Si + Cd,B and D1Si + Cd,C )
is generally higher.

The D2 dumbbells are not as anisotropic as the D1 dumbbells, but show a three-
dimensional structure (cf figure 8). This may be the reason why the results for the two polytypes
are similar in many cases. However, this does not hold for the D2Si + C dumbbells. In general
the relaxed structure of D2Si + C strongly deviates from the ideal configuration (cf figures 2
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3C-SiC

D1Si+C
(Si+C<110>)

(a)

(b) (c)

(Si+C<110>)

D1Si+Cu,B

4H-SiC

D1Si+Cd,B

D1Si+Cu,C

4H-SiC

D1Si+Cd,C

Figure 7. Structures of the mixed dumbbell D1Si + C in the 3C (a) and the 4H polytype (b),
(c). The black dot and the ring mark the dumbbell site and the two atoms forming the dumbbell,
respectively. The defect may be also considered as a complex of two Si atoms and one C atom
occupying the region of a Si–C dimer in the ideal lattice. The third atom is marked by an arrow.
The three atoms lie in the same plane, which is identical to the plane of the figure. The compact
structures in (b) and (c) have the lowest formation energies (cf table 2).

and 4). With the exception of D2Si + Cu,B , the position of the dumbbell atoms is not exactly
within the corresponding planes. The structure of D2Si + C in 3C-SiC and of D2Si + Cd,B

and D2Si + Cd,C is very similar, leading to formation energies that are nearly equal. On the
other hand, D2Si + Cu,B is close to the ideal D2 configuration, whereas D2Si + Cu,C shows the
most irregular structure. Therefore, their energetics differs significantly from that of the other
D2Si + C. It should be mentioned that non-regular D2Si + C structures are also observed if
the Tersoff interatomic potential is employed. Therefore, within the framework of classical
potential methods it cannot be clarified whether the particular structure of D2Si + C is an
artefact due to the potential.

In 3C- and 4H-SiC the first, the second and the third neighbour shells of the tetrahedral
interstitial site are identical; thus the formation energy in both polytypes is almost the same,
as shown in table 2. On the other hand, figure 9 illustrates that these tetrahedral interstitials
have a rather extended three-dimensional structure with significant lattice deformations. Of
the hexagonal interstitials, only the carbon interstitial is stable. It is a rather compact defect
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D2Si+Si

[100]
C

[010]
C

[011]
C

3C-SiC

(Si+Si<100>)

Figure 8. D2Si + Si in 3C-SiC. The lattice deformations around this defect do not show a
pronounced anisotropy.

h
4H-SiC

SiTSi

[0001] h

[11-20]

Figure 9. The Si interstitial on tetrahedral position, SiTSi, in 4H-SiC. The two directions [112̄0]h
and [0001]h lie in the plane of the figure.

as shown in figure 10(a). This may be the reason why the influence of polytypism on the
structure and energetics of this defect is negligible (cf table 2). Figure 10(b) depicts the
relatively isotropic structure of carbon interstitial between two hexagonal Si3C3 rings. Both
the SiHR and the CHR interstitial are stable. On the other hand, only the carbon interstitial
between the Si3 and the C3 trigonal ring is stable, but it has a large formation energy.

In the case of �µ = 0, the following energy hierarchy is obtained for interstitials in 4H-
SiC. The C interstitial with the lowest formation energy is D2C + CB , followed by D1C + CB

and D2C + Siu,B . The corresponding defects in 3C-SiC show the same sequence. The Si
interstitial with the lowest formation energy is D1Si + Cu,C , followed by SiTC and D2Si + Cu,C .
This sequence is different to that in 3C-SiC. For vacancies and antisite defects, the energy
hierarchy in 3C- and 4H-SiC is identical. In both cases the carbon vacancy and carbon on
silicon site have a lower formation energy than the corresponding silicon defects.

Table 3 compares the limited number of available ab initio data [5–7] on elementary defects
in 4H-SiC with corresponding values for 3C-SiC. The formation energy of the compact defects
investigated shows a weak polytype and site dependence. This is consistent with the results of
present classical MD simulations using the Gao–Weber potential.
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4H-SiC

(a)

[0001]h

CHSiCHSi

(b)

CHRCHR

row B row B

Figure 10. The structure of the interstitials CHSi (a) and CHR (b) in 4-SiC.

Table 2. Comparison between the energetics of defects in 4H- and 3C-SiC, for interstitials not
related to lattice sites.

4H-SiC 3C-SiC

Defect type Row B Row C Row A Defect type

Tetrahedral interstitials

SiTSi 5.38 5.39 SiTSi

SiTC 2.60 2.60 SiTC

CTSi 5.69 5.69 CTSi

CTC 5.37 5.38 CTC

Hexagonal interstitials

SiH Not stable
Not stable SiHSiHSi Not stable

SiHC Not stable

CH 5.15
5.15 CHCHSi 5.15

CHC 5.15

Interstitials between two hexagonal Si3C3 rings

SiHR 3.39
CHR 4.85

Interstitials between Si3 and C3 trigonal rings

SiTR Not stable
CTR 6.26

6. Conclusions

A comparative study of elementary defects in 3C- and 4H-SiC was performed. It is based
on a novel defect classification scheme that is valid for both cubic and hexagonal polytypes
and may be easily generalized to rhombohedral SiC. The number of potential non-equivalent
defects in 4H-SiC obtained from this classification is considerably higher than in 3C-SiC.
Although the fundamental defect types are mostly similar, the hexagonal symmetry leads
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Table 3. Defect formation energies for 4H-SiC obtained by ab initio calculations [5–7], in
comparison with corresponding values for 3C-SiC. The ab initio data of [5] were determined by
two methods: LDA- and LSDA-DFT. The latter results are given in brackets.

4H-SiC 3C-SiC

Row B Row C Row A

Defect type [5] [6] [7] [5] [6] [7] [10] [5] [11] [9] Defect type

VSi 8.23 8.26 8.31 8.37 8.17 8.69 8.01 7.8 VSi

(7.97) (8.05) (8.45)
VC 4.15 4.21 4.03 4.07 4.53 4.30 4.11 4.5 VC

(4.15) (4.03) (4.30)
CSi 3.57 3.60 3.52 3.60 3.84 4.06 CSi

SiC 4.25 4.15 4.29 4.15 4.56 4.46 SiC
D2C + C 6.90 6.70 4.53 7.0 D2C + C (C + C〈100〉)

to a diversification. After a detailed discussion of the methods for determining the defect
formation energy by classical-potential and ab initio calculations, the available data for 3C-
SiC were reviewed. The data determined by different theoretical methods and/or different
authors do not agree well. The stability, structure and energetics of the large number of
potential non-equivalent defects in 4H-SiC were investigated by classical MD simulations
using the Gao–Weber potential. Most of the potential defects in 4H-SiC were found to be
stable. The structure and energetics of some complex and anisotropic defects, in particular for
the dumbbells D1Si + Si and D1Si + C, as well as for D2Si + C, differ considerably from that
in 3C-SiC. This may be due to the important role of lattice deformation beyond the first nearest
neighbour shell, and the fact that the spatial distribution of such deformations is strongly
dependent on the polytype structure. The interstitials between hexagonal and trigonal rings
are characteristic for hexagonal SiC, which do not exist in the cubic polytype. The polytypism
does not have a significant influence on the structure and the energetics of the more compact
and isotropic defects, like vacancies, antisites, hexagonal interstitials, and many D1 and D2
dumbbells. The compact defects are characterized by relatively small deformations in the
immediate vicinity of the defect site so that polytypism does not play any role. On the other
hand, for isotropic defects the deformations beyond the first nearest neighbour shell are not as
strongly dependent on the polytype structure as in the case of the anisotropic defects. Despite
their complexity, the tetrahedral interstitials have very similar properties in 3C- and 4H-SiC,
since their first, second and third nearest neighbour shells are equal. In 3C- and 4H-SiC, the
energy hierarchy of carbon interstitials, vacancies and antisites as well as of silicon vacancies
and antisites is very similar, whereas for silicon interstitials differences were found. The
energy hierarchy of the defects is related to their thermal stability. Detailed investigations on
this important topic will be the subject of future investigations. The interatomic potential used
in this work is characterized by a relatively short interaction range, and thus the present results
should rather underestimate than overestimate the differences between the polytypes.

Appendix: The energetics of elementary defects in 3C-SiC

Table A.1 summarizes the energetics of neutral defects in 3C-SiC. The data were calculated
using the thermodynamically correct definition of the formation energy for �µ = 0
(cf equations (3) and (7)). The ab initio data were obtained from the literature. If necessary,
they were transformed as described at the end of section 4. Note that the numbers in the
fifth column were taken from a figure in [9], so they may slightly differ from the original
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Table A.1. Summary of formation energies (eV) of neutral defects in 3C-SiC. For the different
versions of the Tersoff potential and their acronyms, the reader is referred to tables A.2(a) and (b).
The letter ‘X’ marks cases where the defect is not stable. The notation of the dumbbells is illustrated
in figures 3 and 4. In [5] the data were obtained by LDA- and LSDA-DFT. The latter results are
given in brackets.

Tersoff potential

Ab initio COP1 COP2 COP3

Defect type [10] [5] [11] [9] TP1 TP2 TP3 TP1 TP2 TP3 TP1 TP2 TP3 Gao pot. [1]

VSi 8.17 8.69 8.01 7.8 3.14 7.80 7.64 3.14 7.80 7.64 3.14 7.80 7.64 4.67
(8.45)

VC 4.53 4.30 4.11 4.5 3.89 4.19 4.22 3.88 4.08 4.10 3.88 4.08 4.10 1.39
(4.30)

CSi 3.84 4.06 2.29 2.42 2.66 2.19 2.33 2.57 2.19 2.33 2.57 4.43
SiC 4.56 4.46 4.34 6.09 6.60 3.37 4.01 4.10 3.37 4.01 4.10 5.04
Si + Si〈110〉 9.4 15.9 18.1 18.5 15.3 15.0 16.9 12.5 12.1 12.6 3.72
C + C〈110〉 4.69 13.3 7.88 8.64 X 7.68 8.32 8.57 8.06 9.13 9.34 4.67
Si + C〈110〉 X X X 12.7* 12.6∗ 13.1∗ 11.5∗ 12.2∗ 12.5∗ 3.54∗
C + Si〈110〉 4.65 X 13.4 13.4 X X X 12.0 11.8 12.3 5.32
Si + Si〈100〉 7.95 14.7 17.2 17.5 14.6 16.5 16.7 9.86∗ 10.2 10.4 4.15
C + C〈100〉 4.53 7.0 5.95 10.3 10.2 5.32 8.39∗ 8.19∗ 5.32 8.34∗ 8.15∗ 4.41
Si + C〈100〉 8.68 X 9.45∗ X X 13.5+ 13.8+ 9.34∗ 11.6+ 11.6+ 6.06+

C + Si〈100〉 4.96 7.4 9.24 X 12.3 9.14 8.64 8.73 6.69 8.23 8.28 4.79
SiTSi 13.6 7.34 15.4 18.7 19.0 19.9 17.9 18.8 14.8 15.7 16.8 5.39
SiTC 13.3 4.80 17.6 17.9 18.8 17.0 16.0 16.7 13.2 11.6 12.4 2.60
CTSi 9.97 7.21 9.5 5.37 4.47 4.50 4.37 4.47 4.50 9.26 17.1 16.2 5.69
CTC 12.4 8.28 11.0 7.18 7.53 7.78 7.53 14.1 15.3 13.8 11.6 12.6 5.38

7.78
[12, 1]

SiH 17.4∗ 18.0∗ X 15.3 14.7 15.2 13.9∗ 13.2∗ 13.8∗ X
CH 8.9 4.72 7.94 X 12.5 11.1 11.9 12.5 11.2 11.9 5.15

data. The method given in section 5.1 has been applied to determine the formation energies
using the classical interatomic potentials. Although data for the Tersoff potential were already
published [13, 14, 11, 12], a careful check of the data indicated that some results from previous
investigations were not correct since they employed the experimental value for the lattice
parameter instead of that obtained by the different versions of the Tersoff potential. Therefore,
many of the calculations have been repeated. The parameter values for the Tersoff function and
for the cut-off radii are given in tables A.2(a) and (b). Table A.3 compares the experimental
data for the lattice parameter and the cohesive energy per atom with those obtained by the
Gao–Weber potential and the different versions of the Tersoff potential.

For vacancies and antisite defects the ab initio results do not differ very much. In the case
of interstitials, there is no satisfactory agreement between the ab initio values published by
different authors. Finding the reasons for the disagreement is beyond the scope of the present
work. The Gao–Weber potential [1] used in the present comparative study was parameterized to
the ab initio data given in [11]. Therefore, for most defects, the formation energies obtained by
the Gao–Weber potential are comparable with those ab initio data, although some differences
exist. In particular, the vacancy formation energies are smaller than those obtained by ab initio
calculations. In general, the formation energies for Si interstitials obtained by the Gao–Weber
potential are significantly lower than those obtained for the Tersoff potential. In many cases,
this also holds for the formation energy of C interstitials. Furthermore, the Si and C interstitials
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Table A.2. Different versions of the Tersoff potential for SiC. (a) Values for the parameters in the
Tersoff function. The notation of the parameters is the same as in [20, 21, 13]. (b) Values for the
cut-off radii. The notation is the same as in [20, 21, 13, 22, 11].

(a) TP1 [20] TP2 [21] TP3 [13]

Parameters of the bonds

Si–Si C–C Si–C Si–Si C–C Si–C Si–Si C–C Si–C

A (eV) 1830.8 1393.6
√

ASi–Si AC–C TP1 1544.8
√

ASi–Si AC–C TP1 TP2
√

ASi–Si AC–C

λ (Å−1) 2.4799 3.4879
(λSi–Si + λC–C)

2
3.4653

(λSi–Si + λC–C)

2

(λSi–Si + λC–C)

2
B (eV) 471.18 346.74

√
BSi–Si BC–C 389.63

√
BSi–Si BC–C

√
BSi–Si BC–C

µ (Å−1) 1.7322 2.2119
(µSi–Si + µC–C)

2
2.3064

(µSi–Si + µC–C)

2

(µSi–Si + µC–C)

2
χ 1.0 1.0 0.9776 1.0 1.0086 1.0121

ω 1.0 1.0 1.0 1.0 1.0 1.0

Parameters for the central atom used in the calculation of the bond-order parameter

Si C Si C Si C

β 1.0999 × 10−6 1.5724 × 10−7 1.1 × 10−6 4.1612 × 10−6 TP2 TP2
n 0.787 34 0.727 51 TP1 0.990 54
c 100 390.0 38 049.0 19 981.0
d 16.218 4.3484 16.217 7.034
h −0.598 26 −0.570 58 −0.598 25 −0.339 53 −0.399 53

(b) COP1 [20] COP2 [22] COP3 [11]

Si–Si C–C Si–C Si–Si C–C Si–C Si–Si C–C Si–C

R (Å) 2.7 1.8 2.204 54 2.60 1.93 2.36 2.204 54 2.204 54 2.204 54
S (Å) 3.0 2.1 2.509 98 2.80 2.13 2.56 2.509 98 2.509 98 2.509 98

Table A.3. Cohesive energy per atom and nearest neighbour distance derived from different
versions of the Tersoff potential and from the Gao–Weber potential in comparison with experimental
data.

Tersoff potential

3C-SiC TP1 TP2 TP3 Gao–Weber pot. [1] Exp. data

EA
coh (eV/atom) −6.16 −6.43 −6.46 −6.41 −6.34 [23]

nn distance (Å) 1.87 1.85 1.85 1.89 1.89 [24]

have similar formation energies if the Gao–Weber potential is employed, whereas in the case
of the Tersoff potential, the formation energy of the Si interstitial is generally higher. The
spatial defect structure of each defect has been also analysed. In some cases, the deviation
from the ideal dumbbell configuration is considerable. In table A.1, strong and very strong
deviations are marked by asterisks and crosses, respectively.
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